Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Respir Res ; 25(1): 182, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664707

OBJECTIVE: Asthma stands as one of the most prevalent chronic respiratory conditions in children, with its pathogenesis tied to the actived antigen presentation by dendritic cells (DCs) and the imbalance within T cell subgroups. This study seeks to investigate the role of the transcription factor EB (TFEB) in modulating the antigen presentation process of DCs and its impact on the differentiation of T cell subgroups. METHODS: Bone marrow dendritic cells (BMDCs) were activated using house dust mites (HDM) and underwent RNA sequencing (RNA-seq) to pinpoint differentially expressed genes. TFEB mRNA expression levels were assessed in the peripheral blood mononuclear cells (PBMCs) of both healthy children and those diagnosed with asthma. In an asthma mouse model induced by HDM, the TFEB expression in lung tissue DCs was evaluated. Further experiments involved LV-shTFEB BMDCs co-cultured with T cells to explore the influence of TFEB on DCs' antigen presentation, T cell subset differentiation, and cytokine production. RESULTS: Transcriptomic sequencing identified TFEB as a significantly differentially expressed gene associated with immune system pathways and antigen presentation. Notably, TFEB expression showed a significant increase in the PBMCs of children diagnosed with asthma compared to healthy counterparts. Moreover, TFEB exhibited heightened expression in lung tissue DCs of HDM-induced asthmatic mice and HDM-stimulated BMDCs. Silencing TFEB resulted in the downregulation of MHC II, CD80, CD86, and CD40 on DCs. This action reinstated the equilibrium among Th1/Th2 and Th17/Treg cell subgroups, suppressed the expression of pro-inflammatory cytokines like IL-4, IL-5, IL-13, and IL-17, while augmenting the expression of the anti-inflammatory cytokine IL-10. CONCLUSION: TFEB might have a vital role in asthma's development by impacting the antigen presentation of DCs, regulating T cell subgroup differentiation, and influencing cytokine secretion. Its involvement could be pivotal in rebalancing the immune system in asthma. These research findings could potentially unveil novel therapeutic avenues for treating asthma.


Antigen Presentation , Asthma , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Dendritic Cells , Dendritic Cells/immunology , Dendritic Cells/metabolism , Asthma/immunology , Asthma/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Mice , Antigen Presentation/immunology , Humans , Child , Female , Male , Cells, Cultured , Mice, Inbred BALB C
2.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 181-190, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678609

The objectives are to improve the rapid identification method of microbial risk and cut off the route of transmission of resistance genes. When new pathogenic microorganisms are found, intervention can be carried out as early as possible to identify the risk of potential pathogen transmission, and timely cut off the transmission route. Hospital air samples were collected to analyse the distribution of environmental pathogenic microorganisms and the characteristics of ARGs resistance genes. The air samples were collected from 12 sampling sites in the Affiliated Hospital of Yangzhou University. In the infusion room, general ward and intensive care unit, no significant difference was found in microorganisms, and no significant difference was found in microbial resistance genes. There were some differences in resistance genes between east and west districts. Combined with the detection of pathogenic microorganisms and resistance genes in our hospital, it is necessary to improve the daily disinfection measures such as air conditioning and fresh air equipment, cut off the infection route, block the transmission of resistance genes, and monitor pathogens and resistance genes in airborne diseases.


Air Microbiology , Humans , Bacteria/genetics , Bacteria/isolation & purification , Hospitals , Drug Resistance, Microbial/genetics
3.
Inflamm Res ; 73(5): 819-839, 2024 May.
Article En | MEDLINE | ID: mdl-38472395

OBJECTIVE: This study aims to investigate the role of Acyl-CoA synthetase 4 (ACSL4) in mediating mitochondrial fatty acid metabolism and dendritic cell (DC) antigen presentation in the immune response associated with asthma. METHODS: RNA sequencing was employed to identify key genes associated with mitochondrial function and fatty acid metabolism in DCs. ELISA was employed to assess the levels of fatty acid metabolism in DCs. Mitochondrial morphology was evaluated using laser confocal microscopy, structured illumination microscopy, and transmission electron microscopy. Flow cytometry and immunofluorescence were utilized to detect changes in mitochondrial superoxide generation in DCs, followed by immunofluorescence co-localization analysis of ACSL4 and the mitochondrial marker protein COXIV. Subsequently, pathological changes and immune responses in mouse lung tissue were observed. ELISA was conducted to measure the levels of fatty acid metabolism in lung tissue DCs. qRT-PCR and western blotting were employed to respectively assess the expression levels of mitochondrial-associated genes (ATP5F1A, VDAC1, COXIV, TFAM, iNOS) and proteins (ATP5F1A, VDAC1, COXIV, TOMM20, iNOS) in lung tissue DCs. Flow cytometry was utilized to analyze changes in the expression of surface antigens presented by DCs in lung tissue, specifically the MHCII molecule and the co-stimulatory molecules CD80/86. RESULTS: The sequencing results reveal that ACSL4 is a crucial gene regulating mitochondrial function and fatty acid metabolism in DCs. Inhibiting ACSL4 reduces the levels of fatty acid oxidases in DCs, increases arachidonic acid levels, and decreases A-CoA synthesis. Simultaneously, ACSL4 inhibition leads to an increase in mitochondrial superoxide production (MitoSOX) in DCs, causing mitochondrial rupture, vacuolization, and sparse mitochondrial cristae. In mice, ACSL4 inhibition exacerbates pulmonary pathological changes and immune responses, reducing the fatty acid metabolism levels within lung tissue DCs and the expression of mitochondria-associated genes and proteins. This inhibition induces an increase in the expression of MHCII antigen presentation molecules and co-stimulatory molecules CD80/86 in DCs. CONCLUSIONS: The research findings indicate that ACSL4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation play a crucial regulatory role in the immune response of asthma. This discovery holds promise for enhancing our understanding of the mechanisms underlying asthma pathogenesis and potentially identifying novel targets for its prevention and treatment.


Antigen Presentation , Coenzyme A Ligases , Dendritic Cells , Fatty Acids , Lung , Mitochondria , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Mitochondria/metabolism , Fatty Acids/metabolism , Lung/immunology , Lung/metabolism , Asthma/immunology , Asthma/metabolism , Mice , Mice, Inbred C57BL , Female , Mice, Inbred BALB C , Superoxides/metabolism
4.
Reprod Biomed Online ; 48(3): 103571, 2024 Mar.
Article En | MEDLINE | ID: mdl-38244346

RESEARCH QUESTION: Are blastocysts derived from in-vitro-matured metaphase I (MI) oocytes less likely to produce usable embryos for transfer compared with those derived from in-vivo-matured oocytes in cycles undergoing preimplantation genetic testing (PGT)? DESIGN: The primary outcome was usable blastocyst rate, which was compared between blastocysts derived from in-vitro-matured MI oocytes after ovarian stimulation and from in-vivo-matured oocytes. Logistic regression analysis using generalized estimating equations was used to control for confounders in the analysis of factors that may influence the chance of a blastocyst being usable and in the comparison of embryological outcomes. Student's t-test, Mann-Whitney U test, chi-squared tests or Fisher's exact tests were used to compare clinical and pregnancy outcomes. RESULTS: A total of 1810 injected metaphase II (MII) oocytes from 154 PGT cycles involving 154 couples were included in this study. A total of 1577 MII oocytes were in-vivo-matured and 233 were in-vitro-matured MI oocytes. The usable blastocyst rate was similar between the in-vitro-matured MI oocyte group and the in-vivo-matured oocyte group (adjusted RR 0.97, 95% CI 0.40 to 2.34). Three live births were achieved using usable blastocysts derived from in-vitro-matured MI oocytes. CONCLUSIONS: If in-vitro-matured MI oocytes can be fertilized and develop into blastocysts, their ability to provide usable embryos for transfer is similar compared with those developed from in-vivo-matured oocytes. These blastocysts could be considered valuable for women with few viable embryos in assisted reproductive technology cycles.


Oocytes , Pregnancy Outcome , Pregnancy , Humans , Female , Metaphase , Oocytes/physiology , Genetic Testing , Blastocyst/physiology
5.
J Inflamm Res ; 16: 3547-3562, 2023.
Article En | MEDLINE | ID: mdl-37636276

Objective: This study aimed to investigate the role of pyroptosis in alveolar macrophages regarding the immune microenvironment of acute respiratory distress syndrome (ARDS) and its prognosis. Methods: ARDS Microarray data were downloaded from Gene Expression Omnibus (GEO). Support vector machine (SVM) and random forest (RF) models were applied to identify hub pyroptosis-related genes (PRGs) with prognostic significance in ARDS. RT-PCR was used to detect the relative expression of PRGs mRNA in alveolar macrophages of ARDS mice. Consensus clustering analysis was conducted based on the expression of the PRGs to identify pyroptosis modification patterns. Bioinformatic algorithms were used to study the immune traits and biological functions of the pyroptosis patterns. Finally, protein-protein interaction (PPI) networks were established to identify hub regulatory proteins with implications for the pyroptosis patterns. Results: In our study, a total of 12 PRGs with differential expression were obtained. Four hub PRGs, including GPX4, IL6, IL18 and NLRP3, were identified and proven to be predictive of ventilator-free days (VFDS) in ARDS patients. The AUC values of the 4 PRGs were 0.911 (GPX4), 0.879 (IL18), 0.851 (IL6) and 0.841 (NLRP3), respectively. In ARDS mice, GPX4 mRNA decreased significantly, while IL6, IL18, and NLRP3 mRNA increased. Functional analysis revealed that IL6 had the strongest positive correlation with the CCR pathway, while GPX4 exhibited the strongest negative correlation with the T co-inhibition pathway. Based on the expression of the 4 PRGs, three pyroptosis modification patterns representing different immune states were obtained, and pattern C might represent immune storm. Conclusion: The results showed that pyroptosis plays an important regulatory role in the immune microenvironment of ARDS. This finding provides new insights into the pathogenesis, diagnosis, and treatment of ARDS.

6.
Front Endocrinol (Lausanne) ; 14: 1171778, 2023.
Article En | MEDLINE | ID: mdl-37409222

Objective: To investigate the influence of oviductal extracellular vesicles from patients with endometriosis on early embryo development. Design: In vitro experimental study. Setting: University-affiliated hospital. Patients: Women with and without endometriosis who underwent hysterectomy (n = 27 in total). Interventions: None. Main outcome measures: Oviductal extracellular vesicles from patients with endometriosis (oEV-EMT) or without endometriosis (oEV-ctrl) were isolated and co-cultured with two-cell murine embryos for 75 hours. Blastocyst rates were recorded. RNA sequencing was used to identify the differentially expressed genes in blastocysts cultured either with oEV-EMT or with oEV-ctrl. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to identify potential biological processes in embryos that oEV-EMT affects. The functions of oEV on early embryo development were determined by reactive oxygen species (ROS) levels, mitochondrial membrane potentials (MMP), total cell numbers, and apoptotic cell proportions. Results: Extracellular vesicles were successfully isolated from human Fallopian tubal fluid, and their characterizations were described. The blastocyst rates were significantly decreased in the oEV-EMT group. RNA sequencing revealed that oxidative phosphorylation was down-regulated in blastocysts cultured with oEV-EMT. Analysis of oxidative stress and apoptosis at the blastocysts stage showed that embryos cultured with oEV-EMT had increased ROS levels, decreased MMP, and increased apoptotic index. Total cell numbers were not influenced. Conclusion: Oviductal extracellular vesicles from patients with endometriosis negatively influence early embryo development by down-regulating oxidative phosphorylation.


Endometriosis , Extracellular Vesicles , Humans , Female , Animals , Mice , Reactive Oxygen Species/metabolism , Endometriosis/metabolism , Oviducts/metabolism , Extracellular Vesicles/metabolism , Embryonic Development/physiology
7.
Chemosphere ; 336: 139242, 2023 Sep.
Article En | MEDLINE | ID: mdl-37330070

Ruminant rumen is a biological fermentation system that can efficiently degrade lignocellulosic biomass. The knowledge about mechanisms of efficient lignocellulose degradation with rumen microorganisms is still limited. In this study, composition and succession of bacteria and fungi, carbohydrate-active enzymes (CAZymes), and functional genes involved in hydrolysis and acidogenesis were revealed during fermentation in Angus bull rumen via metagenomic sequencing. Results showed that degradation efficiency of hemicellulose and cellulose reached 61.2% and 50.4% at 72 h fermentation, respectively. Main bacterial genera were composed of Prevotella, Butyrivibrio, Ruminococcus, Eubacterium, and Fibrobacter, and main fungal genera were composed of Piromyces, Neocallimastix, Anaeromyces, Aspergillus, and Orpinomyces. Principal coordinates analysis indicated that community structure of bacteria and fungi dynamically changed during 72 h fermentation. Bacterial networks with higher complexity had stronger stability than fungal networks. Most CAZyme families showed a significant decrease trend after 48 h fermentation. Functional genes related to hydrolysis decreased at 72 h, while functional genes involved in acidogenesis did not change significantly. These findings provide a in-depth understanding of mechanisms of lignocellulose degradation in Angus bull rumen, and may guide the construction and enrichment of rumen microorganisms in anaerobic fermentation of waste biomass.


Microbiota , Zea mays , Cattle , Animals , Male , Rumen/microbiology , Fermentation , Microbiota/genetics , Bacteria/genetics , Gene Expression , Digestion
8.
Hum Reprod Open ; 2023(2): hoad006, 2023.
Article En | MEDLINE | ID: mdl-36895886

STUDY QUESTION: Do extracellular vesicles (EVs) from human Fallopian tubes exert an influence on early embryo development in vitro? SUMMARY ANSWER: Human Fallopian tube EVs carrying miRNAs increase murine embryo viability in vitro. WHAT IS KNOWN ALREADY: Oviductal EVs (oEVs) are recently identified key players in embryo-oviduct interactions that contribute to successful pregnancy in vivo. Their absence in current in vitro systems may partly explain the suboptimal embryo development observed; therefore, further knowledge is needed about their impact on early embryos. STUDY DESIGN SIZE DURATION: The oEVs were isolated from the luminal fluid of human Fallopian tubes using ultracentrifugation. We cocultured oEVs with murine two-cell embryos until the blastocyst stage. The study was conducted between August 2021 and July 2022. PARTICIPANTS/MATERIALS SETTING METHODS: A total of 23 premenopausal women were recruited for Fallopian-tubes collection, and the oEVs were isolated. The micro RNA (miRNA) contents were detected using high-throughput sequencing and their target genes and effects were analyzed. After in vitro culture with or without oEVs, the blastocyst and hatching rates were recorded. Furthermore, for the blastocysts formed, we assessed the total cell number, inner cell mass proportion, reactive oxygen species (ROS) level, number of apoptotic cells, and mRNA expression levels of genes involved in development. MAIN RESULTS AND THE ROLE OF CHANCE: EVs were successfully isolated from the human Fallopian tubal fluid and the concentrations were evaluated. A total of 79 known miRNAs were identified from eight samples that had been sequenced, all involved in various biological processes. The blastocyst rate, hatching rate, as well as total cell number of blastocysts were significantly increased in the oEVs-treated groups (P < 0.05 versus untreated), while the proportion of inner cell mass showed no significant difference between groups. ROS levels and apoptotic cell proportions were decreased in the oEVs-treated groups (P < 0.05 versus untreated). The genes, Actr3 (actin-related protein 3), Eomes (eomesodermin), and Wnt3a (Wnt family member 3A) were upregulated in blastocysts in the oEVs-treated group. LARGE SCALE DATA: Data are available from Gene Expression Omnibus: Accession number: GSE225122. LIMITATIONS REASONS FOR CAUTION: The Fallopian tubes in the current study were collected from patients with uterine fibroids (the reason they underwent hysterectomy), and this pathological condition may affect the characteristics of EVs in luminal fluid. Also, owing to restrictions for ethical reasons, an in vitro co-culture system using murine embryos was used instead of human embryos, and the findings may not be transferable. WIDER IMPLICATIONS OF THE FINDINGS: Deciphering miRNA contents in human oEVs and providing new evidence that oEVs benefit embryo development in vitro will not only increase our knowledge on embryo-oviduct communication but also potentially improve ART outcomes. STUDY FUNDING/COMPETING INTERESTS: This study was supported by the National Key Research and Development Project of China (2021YFC2700603). No competing interests are declared.

9.
J Oncol ; 2022: 5824617, 2022.
Article En | MEDLINE | ID: mdl-36226249

Metformin, the first-line oral antidiabetic medicine, has shown great antineoplastic potential in various cancer types, despite an unclear mechanism. This study aimed to elucidate the possible mechanism of metformin as a chemotherapy agent with less reproductive and genetic toxicity in human endometrial cancer. The type I endometrial carcinoma cell lines Ishikawa and RL95-2 were treated with metformin. Cell functions, such as proliferation, migration, and invasion, were analyzed. Flow cytometry was performed for cell cycle and apoptosis analyses. Simultaneously, RT-qPCR and western blotting were performed to explore the possible mechanism. Moreover, YAP1 knockout Ishikawa cells were established via lentivirus to demonstrate the underlying mechanism. The results showed that metformin mediated Ishikawa and RL95-2 cell growth inhibition in a dose- and time-dependent manner. The IC50 values of metformin in Ishikawa and RL95-2 cells were 10 mM and 8 mM, respectively. The migration and invasion abilities were also inhibited in the metformin-treated group using wound healing assays and transwell migration and invasion assays, and Ishikawa and RL95-2 cells were arrested in the G1 or G2 phase, respectively. Moreover, the cell proportions of cells in both early and late apoptosis stages were dramatically elevated when treated with metformin, as was the ratio of Bax/Bcl-2 expression. Additionally, the expression levels of YAP1 mRNA and protein in the treatment group were much lower than those in the control group. The cellular behaviors of YAP1 knockout Ishikawa cells were similar to those in the metformin-treated group. Our results demonstrated that it is an attractive alternative to cytotoxic chemotherapy in human endometrial cancer, and YAP of the Hippo pathway may be a potential molecular target. This study provides novel ideas for the adjuvant therapy of endometrial cancer patients, especially for women with strong fertility desires and demands.

10.
Arch Microbiol ; 204(6): 321, 2022 May 14.
Article En | MEDLINE | ID: mdl-35567648

Plant-microbe interactions affect ecosystem function, and plant species influence relevant microorganisms. However, the different genotypes of maize that shape the structure and function of the rhizosphere microbial community remain poorly investigated. During this study, the structures of the rhizosphere microbial community among three genotypes of maize were analyzed at the seedling and maturity stages using high-throughput sequencing and bioinformatics analysis. The results demonstrated that Tiannuozao 60 (N) showed higher bacterial and fungal diversity in both periods, while Junlong1217 (QZ) and Fujitai519 (ZL) had lower diversity. The bacterial community structure among the three varieties was significantly different; however, fewer differences were found in the fungal community. The bacterial community composition of N and QZ was similar yet different from ZL at the seedling stage. The bacterial networks of the three cultivars were more complex than the fungal networks, and the networks of the mature stages were more complex than those of the seedling stages, while the opposite was true for the fungi. FAPROTAX functional and FUNGuild functional predictions revealed that different varieties of maize were different in functional abundance at the genus level, and these differences were related to breeding characteristics. This study suggested that different maize genotypes regulated the rhizosphere bacterial and fungal communities, which would help guide practices.


Microbiota , Rhizosphere , Bacteria/genetics , Fungi/genetics , Genotype , Microbiota/genetics , Plant Breeding , Plant Roots/microbiology , Soil/chemistry , Soil Microbiology , Zea mays/microbiology
11.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article En | MEDLINE | ID: mdl-35563250

In recent years, host-microbiome interactions in both animals and plants has emerged as a novel research area for studying the relationship between host organisms and their commensal microbial communities. The fitness advantages of this mutualistic interaction can be found in both plant hosts and their associated microbiome, however, the driving forces mediating this beneficial interaction are poorly understood. Alternative splicing (AS), a pivotal post-transcriptional mechanism, has been demonstrated to play a crucial role in plant development and stress responses among diverse plant ecotypes. This natural variation of plants also has an impact on their commensal microbiome. In this article, we review the current progress of plant natural variation on their microbiome community, and discuss knowledge gaps between AS regulation of plants in response to their intimately related microbiota. Through the impact of this article, an avenue could be established to study the biological mechanism of naturally varied splicing isoforms on plant-associated microbiome assembly.


Ecotype , Microbiota , Plants/genetics , Symbiosis/genetics
12.
Crit Rev Eukaryot Gene Expr ; 32(1): 79-98, 2022.
Article En | MEDLINE | ID: mdl-35377983

Kidney renal clear cell carcinoma (KIRC) is the most common and aggressive subtype of renal cell carcinoma. N6-methyladenosine (m6A) RNA methylation is the most prevalent epigenetic RNA modification. Long non-coding RNAs (lncRNAs) have emerged as a key role in regulating cancer progression. However, little has been learned about the molecular functions of m6A-related lncRNAs in KIRC. The prognostic value of m6A-related ln-cRNAs was investigated in KIRC samples downloaded from The Cancer Genome Atlas (TCGA) dataset. The m6A-related lncRNAs were further screen out by Pearson correlation test. Then, 27 m6A-related lncRNAs were confirmed as potential prognostic factors through univariate Cox regression analysis. They were entered into Lasso and multivariate Cox regression to build a m6A-related lncRNA prognostic signature, including 14 m6A-related lncRNAs determined as independent prognostic factors. Additionally, a risk score calculated according to the prognostic model could divide KIRC patients into low- and high-risk groups depending on median risk score as cut-off. A prognostic nomogram, derived from the prognostic model and integrating clinical characteristics of patients, was constructed. Three distinct clusters were identified with different immune signatures through consensus clustering analysis according to the expression pattern of m6A-related lncRNAs. Twenty-seven prognostic m6A-related lncRNAs were determined as prognostic lncRNAs from TCGA-KIRC cohort. The m6A-related lncRNA prognostic signature containing 14 independent prognostic lncRNAs exhibited good accuracy in predicting overall survival of KIRC patients. We correlated the three distinct clusters with immune infiltration signature of KIRC for the first time. We found that the worse prognosis of cluster2 was probably mediated by immune evasion. In summary, our study identified a m6A-related lncRNAs prognostic signature which had great clinical value in prognosis assessment. We classified TCGA-KIRC samples into three clusters with distinct immune signatures, which could be considered as potential targets of immunotherapy for KIRC treatment in the future.


Carcinoma, Renal Cell , Kidney Neoplasms , Adenosine/analogs & derivatives , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Humans , Kidney/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Prognosis
13.
Mol Ther Nucleic Acids ; 26: 927-944, 2021 Dec 03.
Article En | MEDLINE | ID: mdl-34760337

The circRNAs, a new subclass of non-coding RNAs that are catalyzed by RNA-binding proteins (RBPs), have been reported to be associated with the progression of multiple types of cancer. We previously discovered that heterogeneous nuclear ribonucleoprotein L (HnRNP-L), a multi-functional RBP, is associated with pro-proliferation and anti-apoptosis activities in prostate tumor cells. In this study, we aim to establish the biological relevance of circCSPP1 (a newly discovered signature circRNA in prostate cancer [PCa]) and HnRNP-L to prostate cancer progression. First, we demonstrated that circCSPP1 expression was higher in prostate cancer tissues than in benign tissues and higher in prostate cancer cells than in benign cells. Then, the in vitro gain- and loss-of-function experiments showed that the circCSPP1 expression in prostate cancer cells was regulated by HnRNP-L, and the increased circCSPP1 significantly induced autophagy, which led to an enhanced potential in proliferation, migration, and invasion of prostate cancer cells. These results were consistent with the in vivo experiment where increased or decreased circCSPP1 was associated with higher or slower growth rate in grafted tumors. Finally, we demonstrated the potential competing endogenous RNA network, involving circCSPP1, miR-520h, and early growth response factor 1 (EGR1), in prostate cancer cells, which may play an important role in prostate cancer progression. Our study indicated that the increase in circCSPP1 in prostate cancer, which may be catalyzed by HnRNP-L, can induce cellular autophagy through the circCSPP1-miR-520h-EGR1 axis, leading to the progression of prostate tumor. This newly discovered circRNA biomarker may be used for clinical prognosis of prostate cancer as well as for development of novel therapy plans.

14.
Reprod Sci ; 28(8): 2261-2269, 2021 08.
Article En | MEDLINE | ID: mdl-33625691

Recurrent pregnancy loss (RPL) is affecting 3-5% of the women who are expecting to have babies annually. However, the molecular changes of RPL patients have not been well characterized before. In the current study, we aimed to discover the differentially expressed genes (DEGs) in decidua from RPL patients by utilizing RNA sequencing (RNA-seq) technology. Four RPL patients and three control women were recruited to conduct RNA-seq, and 153 genes comprising 69 were upregulated and 84 downregulated showed different expression levels between the health control and RPL groups. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to identify potential biological processes associated with RPL. We recognized that type I interferon signaling pathway and TNF signaling pathway are significantly upregulated in women with RPL. Upregulated expression of MX1, IFI27, and ISG15 in type I interferon signaling pathway and TNFRSF21 in TNF signaling pathway were validated by an extended sample of 15 RPL patients and 12 control women, by quantitative real-time polymerase chain reaction (qRT-PCR). In conclusion, the results of the current study revealed molecular changes in decidua which may reflect the intrauterine circumstance when pregnancy loss happens and potentially contributes to RPL.


Abortion, Habitual/metabolism , Decidua/metabolism , Abortion, Habitual/genetics , Adult , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Pregnancy , Pregnancy Trimester, First , Sequence Analysis, RNA , Young Adult
15.
Adv Exp Med Biol ; 1300: 283-313, 2021.
Article En | MEDLINE | ID: mdl-33523439

With the development of human society, factors that contribute to the impairment of female fertility is accumulating. Lifestyle-related risk factors, occupational risk factors, and iatrogenic factors, including cancer and anti-cancer treatments, have been recognized with their negative effects on the function of female reproductive system. However, the exact influences and their possible mechanism have not been elucidated yet. It is impossible to accurately estimate the indexes of female fertility, but many researchers have put forward that the general fertility has inclined through the past decades. Thus the demand for fertility preservation has increased more and more dramatically. Here we described some of the factors which may influence female reproductive system and methods for fertility preservation in response to female infertility.


Fertility Preservation , Infertility, Female , Neoplasms , Female , Fertility , Genitalia, Female , Humans
16.
Front Oncol ; 10: 1781, 2020.
Article En | MEDLINE | ID: mdl-33014875

Accumulated evidence has shown that the photosensitizer Verteporfin (VP) may be an ideal agent for various cancer types. However, the effect and mechanism of VP on human cervical carcinoma remain rudimentary. The aim of this study was to investigate the effect of VP on human cervical carcinoma cells (HeLa and SiHa cells) and to elucidate the possible mechanism. CCK-8, wound healing assay, flow cytometry analysis, western blotting, TUNEL staining were performed to evaluate the effects of VP on HeLa and SiHa cells in vitro as well as in vivo on a xenograft model. In addition, the role of endoplasmic reticulum (ER) stress in VP-induced apoptosis was investigated using RT-qPCR and western blotting. The results showed that the viability of HeLa and SiHa cells was suppressed by VP in dose- and time-dependent manners. Compared with the control group, apoptosis rates were higher with stronger TUNEL fluorescence signals in the experimental group, which substantiated that VP induced apoptosis at both 2D and 3D cell levels. Besides, VP can squelch the growth of tumors in both sizes and weights on the xenograft models without impairing ovarian reserve. Mechanism studies demonstrated that VP activated ER stress by upregulating the expression of GRP78, CHOP, and Caspase-12, and VP-induced apoptosis can be alleviated when ER stress pathway was inhibited. Our results provided a foundation for repurposing VP as a promising agent for cervical cancer patients without obvious reproductive toxicity by targeting ER stress pathway, and more researches are required to support its application in clinical practice.

17.
FASEB J ; 34(9): 11913-11924, 2020 09.
Article En | MEDLINE | ID: mdl-32683743

We recently found that adolescent cocaine exposure (ACE) resulted in an enhancement of the γ-aminobutyric acid (GABA) neurotransmitter system in the prelimbic cortex (PrL) of adult mice. Here, we aim to further investigate the role of GABAergic transmission, especially parvalbumin (PV) interneurons within PrL in the development of ACE-induced anxiety-like behavior, and to assess whether and how electro-acupuncture (EA) therapeutically manage the ACE-induced abnormal behaviors in adulthood. ACE mice exhibited the enhanced anxiety-like behaviors in their adulthood, accompanied by increased GABAergic transmission and PV interneurons in PrL. Chemogenetic blocking PV interneurons in PrL alleviated ACE-enhanced anxiety-like behaviors in mice. Importantly, 37-day EA treatments (mixture of 2 Hz/100 Hz, 1 mA, 30 minutes once a day) at the acupoints of Yintang (GV29) and Baihui (GV20) also alleviated ACE-induced anxiety-like behaviors, and rescued ACE-impaired GABAergic neurotransmitter system and PV interneurons in PrL. In parallel, EA treatments further suppressed the activities of pyramidal neurons in PrL, suggesting that EA treatments seem to perform it beneficial effects on the ACE-induced abnormal emotional behaviors by "calming down" the whole PrL. Collectively, these findings revealed that hyper-function of GABAergic transmission, especially mediating by PV interneurons in PrL may be key etiology underlying ACE-induced anxiety-like behaviors. At least by normalizing the function of GABAergic and PV interneurons, EA may represent a promising therapeutic strategy for managing adolescent substance use-related emotional disorders.


Anxiety , Behavior, Animal , Cocaine-Related Disorders , Electroacupuncture , Interneurons/metabolism , Parvalbumins/metabolism , Animals , Anxiety/metabolism , Anxiety/physiopathology , Anxiety/therapy , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/physiopathology , Cocaine-Related Disorders/therapy , Limbic System/metabolism , Limbic System/physiopathology , Male , Mice , Mice, Transgenic
18.
Mol Ther Nucleic Acids ; 19: 937-950, 2020 Mar 06.
Article En | MEDLINE | ID: mdl-32004865

We previously found that cocaine abuse could increase microRNA134 (miR134) levels in the hippocampus; yet the roles of miR134 in cocaine-related abnormal psychiatric outcomes remain unknown. In this study, using the cocaine-induced conditioned place preference (CPP) mice model, we found that mice exhibit enhanced anxiety-like and depression-like behaviors during the cocaine extinction (CE) period of CPP, accompanied by obviously increased miR134 levels and decreased levels of 19 genes that are associated with synaptic plasticity, glia activity, and neurochemical microenvironments, in the ventral hippocampus (vHP). Knockdown of miR134 in vHP in vivo reversed the changes in 15 of 19 potential gene targets of miR134 and rescued the abnormal anxiety-like and depression-like behavioral outcomes in CE mice. In parallel, knockdown of miR134 reversed CE-induced changes in dendritic spines and synaptic proteins and increased the field excitatory postsynaptic potential (fEPSP) of CA1 pyramidal neurons in the vHP of CE mice. In addition, knockdown of miR134 suppressed the CE-enhanced microglia activity, inflammatory, apoptotic, and oxidative stress statuses in the vHP. With the data taken together, miR134 may be involved in cocaine-associated psychiatric problems, potentially via regulating the expressions of its gene targets that are related to synaptic plasticity and neurochemical microenvironments.

19.
F S Sci ; 1(2): 183-187, 2020 Nov.
Article En | MEDLINE | ID: mdl-35559926

OBJECTIVE: To detect the oxytocin receptor (OTR) expression levels in the endometrium and decidua from women who have experienced recurrent implantation failure (RIF) and fertile women. DESIGN: Laboratory study using human endometrial and decidual samples. SETTINGS: University-affiliated hospital. PATIENT(S): Six patients with RIF and six fertile women were recruited for endometrial sampling on day 20-24 of the menstrual cycle. Decidual tissues were collected from women who had a history of RIF and experienced a spontaneous abortion at 6-8 weeks of gestation (n = 8) and women with healthy pregnancies that terminated for nonmedical reasons (n = 8). INTERVENTION: None. MAIN OUTCOME MEASURE(S): OTR expression in the endometrial and decidual tissues was detected with the use of real-time quantitative polymerase chain reaction and Western blotting. RESULT(S): OTR protein and mRNA were significantly increased in the endometria of RIF patients. In the decidua, OTR protein was significantly up-regulated in the RIF group, whereas mRNA was significantly decreased in this group. CONCLUSION(S): Women who experienced RIF presented with an aberrant expression pattern of OTR in the endometria and decidua.

20.
Cancer Lett ; 471: 88-102, 2020 02 28.
Article En | MEDLINE | ID: mdl-31812696

Cervical cancer is one of the most common cancers threatening women's health, and the persistent infection of high-risk human papillomavirus (HPV) is closely related to the pathogenesis of cervical cancer and many other cancers. The carcinogenesis is a complex process from precancerous lesion to cancer, which provides an excellent window for clinical prevention, diagnosis, and treatment. However, despite the various preventions and treatments such as HPV screening, prophylactic HPV vaccines, surgery, radiotherapy, and chemotherapy, the disease burden remains heavy worldwide. Currently, three types of prophylactic vaccines, quadrivalent HPV vaccine, bivalent HPV vaccine, and a new nonavalent HPV vaccine, are commercially available. Although these vaccines are effective in protecting against 90% of HPV infection, they provide limited benefits to eliminate pre-existing infections. Therefore, new progress has been made in the development of therapeutic vaccines. Therapeutic vaccines differ from prophylactic vaccines in that they aim to stimulate cell-mediated immunity and kill the infected cells rather than neutralizing antibodies. This review aims at systematically covering the progress, current status and future prospects of various vaccines in development for the prevention and treatment of HPV-associated lesions and cancers and laying foundations for the development of the new original vaccine.


Papillomavirus Infections/pathology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology , Clinical Trials, Phase III as Topic , Female , Humans , Papillomaviridae/genetics , Papillomaviridae/immunology , Papillomavirus Infections/virology , Papillomavirus Vaccines/immunology , Randomized Controlled Trials as Topic , Uterine Cervical Neoplasms/pathology
...